42 research outputs found

    A pseudodifferential equation with damping for one-way wave propagation in inhomogeneous acoustic media

    Get PDF
    A one-way wave equation is an evolution equation in one of the space directions that describes (approximately) a wave field. The exact wave field is approximated in a high frequency, microlocal sense. Here we derive the pseudodifferential one-way wave equation for an inhomogeneous acoustic medium using a known factorization argument. We give explicitly the two highest order terms, that are necessary for approximating the solution. A wave front (singularity) whose propagation velocity has non-zero component in the special direction is correctly described. The equation can't describe singularities propagating along turning rays, i.e. rays along which the velocity component in the special direction changes sign. We show that incorrectly propagated singularities are suppressed if a suitable dissipative term is added to the equation.Comment: 15 page

    A dispersion minimizing scheme for the 3-D Helmholtz equation based on ray theory

    Full text link
    We develop a new dispersion minimizing compact finite difference scheme for the Helmholtz equation in 2 and 3 dimensions. The scheme is based on a newly developed ray theory for difference equations. A discrete Helmholtz operator and a discrete operator to be applied to the source and the wavefields are constructed. Their coefficients are piecewise polynomial functions of hkhk, chosen such that phase and amplitude errors are minimal. The phase errors of the scheme are very small, approximately as small as those of the 2-D quasi-stabilized FEM method and substantially smaller than those of alternatives in 3-D, assuming the same number of gridpoints per wavelength is used. In numerical experiments, accurate solutions are obtained in constant and smoothly varying media using meshes with only five to six points per wavelength and wave propagation over hundreds of wavelengths. When used as a coarse level discretization in a multigrid method the scheme can even be used with downto three points per wavelength. Tests on 3-D examples with up to 10810^8 degrees of freedom show that with a recently developed hybrid solver, the use of coarser meshes can lead to corresponding savings in computation time, resulting in good simulation times compared to the literature.Comment: 33 pages, 12 figures, 6 table

    Semiclassical analysis for the Kramers-Fokker-Planck equation

    Get PDF
    We study some accurate semiclassical resolvent estimates for operators that are neither selfadjoint nor elliptic, and applications to the Cauchy problem. In particular we get a precise description of the spectrum near the imaginary axis and precise resolvent estimates inside the pseudo-spectrum. We apply our results to the Kramers-Fokker-Planck operator

    A mathematical framework for inverse wave problems in heterogeneous media

    Full text link
    This paper provides a theoretical foundation for some common formulations of inverse problems in wave propagation, based on hyperbolic systems of linear integro-differential equations with bounded and measurable coefficients. The coefficients of these time-dependent partial differential equations respresent parametrically the spatially varying mechanical properties of materials. Rocks, manufactured materials, and other wave propagation environments often exhibit spatial heterogeneity in mechanical properties at a wide variety of scales, and coefficient functions representing these properties must mimic this heterogeneity. We show how to choose domains (classes of nonsmooth coefficient functions) and data definitions (traces of weak solutions) so that optimization formulations of inverse wave problems satisfy some of the prerequisites for application of Newton's method and its relatives. These results follow from the properties of a class of abstract first-order evolution systems, of which various physical wave systems appear as concrete instances. Finite speed of propagation for linear waves with bounded, measurable mechanical parameter fields is one of the by-products of this theory
    corecore